If it's not what You are looking for type in the equation solver your own equation and let us solve it.
154x^2-451x+165=0
a = 154; b = -451; c = +165;
Δ = b2-4ac
Δ = -4512-4·154·165
Δ = 101761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{101761}=319$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-451)-319}{2*154}=\frac{132}{308} =3/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-451)+319}{2*154}=\frac{770}{308} =2+1/2 $
| -11+31=4(x+2) | | y=25(9)=500 | | 78p+5+90p=243 | | 10x=10+8x=6 | | 3(4y+6)=2(3y+18) | | X+6-2x=14 | | 78p+5+90p=179 | | -11+31={4x+2) | | -2x(3x-8)=2 | | -26=-4(5-5x)-6(x-6) | | 5h-2(32h+4)=10 | | X(x^2+3)=50 | | 56x-34-12x-10=78 | | X^3+3x=50 | | 39-x=54 | | 8x+6=7x-10 | | 0=4(x-4)-6(x-4) | | (5x−1)(3x+2)=0 | | 24q-3(2q-5)=51 | | 8/p=7/12 | | 46=3(x+6)+5(x+4) | | -x/6+24=5 | | 912=612+×5x | | 3(-2x+4)=30 | | 4z-9=57 | | 4(5x+3)+3(-4x-4)=-48 | | 9n+22=3n-(-4n+12 | | 23-7x-21+5x=10 | | Y+80x=50 | | -20-4x+1=-15 | | 4x-16+4-10x=30 | | 84+8x=180 |